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Abstract
Within the generalized definition of coherent states as group orbits we study the
orbit spaces and the orbit manifolds in the projective spaces constructed from
linear representations. Invariant functions are suggested for arbitrary groups.
The group SU(2) is studied in particular and the orbit spaces of its j = 1/2
and 1 representations completely determined. The orbits of SU(2) in CPN

can be either two- or three-dimensional, the former being either isomorphic to
S2 or to RP 2 and the latter being isomorphic to quotient spaces of RP 3. We
end with a look from the same perspective to the quantum mechanical space of
states in particle mechanics.

PACS numbers: 0220Q, 0365F, 4225K

1. Introduction

Coherent states are an important tool in the study of wave phenomena finding many relevant
applications in quantum physics [1, 2], both in particle mechanics and in field theory [3–6].
The familiar Glauber states [7,8] can be equivalently defined as the elements of the orbit of the
Heisenberg–Weyl group which contains the ground state, as the eigenstates of the annihilation
operator or as the minimum uncertainty wavepackets. Following these different definitions
there are different approaches to the generalization of the concept of coherent states. Here we
privilege the group theoretical approach [9]. The generalization procedure has been extended
to include systems with no classical analogue such as spin systems [10,11] and others [12–16].
For a fuller account of applications of coherent states in different areas of physics see [17],
where a more complete and historical list of references can be found.

In the group theoretical approach to coherent states Hilbert space is decomposed into the
union of disjoint sets of coherent states, the group orbits. In finite-dimensional Hilbert spaces
the orbits can be labelled using invariant (in the sense that they are constant within orbits) real
functions in Hilbert space. These functions together with the group parameters completely
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parametrize Hilbert space. The-dimensionality of the sets of coherent states can be related to
the values these invariant functions have on the sets.

Here we apply known results from group theory and invariant theory (reviewed in section 2
together with appendix A) to the study of coherent states as group orbits (reviewed in section 3)
in the complex projective spaces of quantum mechanics (see appendix B). We make a proposal
for invariant polynomial functions constructed from the Casimir operators in section 4.

The group SU(2) is studied in detail in section 5. Orbits turn out to be either two-
or three-dimensional; the former are in a finite number (int(j + 1)) within each irreducible
representation j and they are either isomorphic to S2 or to RP 2 (section 5.1). In section 5.2 we
work out completely the j = 1 representation: the orbit space is isomorphic to a line segment;
the orbits in its interior are isomorphic to the three-dimensional lens space S3/Z4 and on its
vertices they are two-dimensional (one isomorphic to S2 and the other to RP 2); the invariant
function Ji Ji serves as a label for the orbits. Our results confirm those of [18] where they
overlap. We comment on possible approaches to the study of higher j representations using
analytical as well as numerical methods in section 5.3. We end this section comparing our
results for the two-dimensional orbits with the known formulae for coherent states in SU(2)
systems (section 5.4).

We finish in section 6 with the definition of invariants for the infinite-dimensional Hilbert
spaces of particle mechanics.

2. Group orbits and invariants

Here we review the mathematical background about group orbits and how to label them using
real functions which are invariants on the orbits. This subject can be found in the mathematical
literature for group theory and invariant theory [19–21] and it has been explored in physics
mostly in the study of the minima of potential functions in theories with spontaneous symmetry
breaking where these potentials are invariant functions in the representation space of the gauge
group [22–26].

Let U(g) be a representation of the Lie group G with Lie algebra G on the manifold H.
We represent points in H by |ψ〉, anticipating the application to vector spaces that we have in
mind. The G-orbit through |φ〉 is the subset of H given by

Cφ = {|ψ〉 ∈ H : |ψ〉 = U(g)|φ〉, g ∈ G} . (1)

If the group G is smooth and compact, the G-orbits are smooth, closed and compact
submanifolds of H. They are also connected if G is connected. The relation ‘|φ′〉 lies on
the same orbit as |φ〉’ is clearly an equivalence relation: reflexive, symmetric and transitive.
As a consequence H can be partitioned into disjoint orbits

H =
⋃
φ

Cφ (2)

where the label φ runs over orbits (equivalence classes) and not over points. The quotient
space H/G is called the orbit space.

The little group (or isotropy group) of G at |φ〉 is the subgroup Gφ of G which leaves |φ〉
fixed:

Gφ = {g ∈ G : U(g)|φ〉 = |φ〉} . (3)

The subgroup Gφ is a Lie group and it may not be connected even if G is. Its Lie algebra is
formed by the elements of G which annihilate |φ〉:

Gφ = {t ∈ G : t |φ〉 = 0} . (4)
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The little groups at points lying on the same orbit are conjugated in G and are therefore
isomorphic; if |φ′〉 = U(g)|φ〉 then

Gφ′ = gGφg
−1. (5)

Consequently the dimension of each orbit is

dim Cφ = dim G − dim Gφ. (6)

The class of all subgroups of G conjugated in G to Gφ forms an equivalence class, the orbit
type �φ . Distinct-orbit types are disjoint. In the set of all orbit types a partial-ordering relation
can be introduced: �φ′ � �φ if an element of �φ′ is conjugated to a proper subgroup of an
element of �φ , and we say that �φ′ has a lower symmetry than �φ . An orbit is said to be
principal if � is locally minimal in orbit space. A point is said to be principal if it lies on a
principal orbit. The set of all orbits with the same orbit type � is called a stratum.

A function f (|ψ〉) in representation space H is said to be G-invariant if

f (U(g)|ψ〉) = f (|ψ〉) ∀g ∈ G ∀|ψ〉 ∈ H. (7)

It follows that G-invariant functions are also functions on the orbit space H/G.
In appendix A we show some results and techniques applicable to real orthogonal linear

representations (not necessarily irreducible) of compact groups. We are interested, for quantum
mechanical applications, in complex unitary linear representations. But there is a standard
correspondence between any unitary n-dimensional complex representation U(g) of G and an
orthogonal 2n-dimensional real representation O(g), called the realification of U(g), which is
obtained by the simple correspondence between vectors

(z1, z2, . . . , zn) ↔ (Re z1,Re z2, . . . ,Re zn, Im z1, Im z2, . . . , Im zn). (8)

Since U(N) = U(1)×SU(N) all vectors in a Hilbert space carrying a non-trivial (in the U(1)
factor) representation of U(N) which differ solely by a phase factor lie on the same orbit.
Therefore the orbit space for the complex projective representations of U(N) and SU(N) are
the same. For the same reason the orbit space of the complex projective representation ofU(N)

is the same as the orbit space of the real projective representation of the realification of U(N).
Thus the orbit space of the complex projective representation R of SU(N) coincides with the
projective slice of the realification of the representation R×S of U(N), where S is a non-trivial
representation of U(1). The orbits themselves have the same little groups and as manifolds
they are copies of the orbits of SU(N) in projective space multiplied by S1 on account of all
the vectors differing by a phase which are not identified in the latter representation.

We finish this section with a remark about the complex projective spaces PH obtained
after the identifications (B.1) (see appendix B). Unitary transformations do not change the
norm of a vector but they may change its phase. As a consequence, when using vectors |φ〉
in complex vector spaces H to describe points in PH, the Lie algebra of the little group Gφ

is no longer given by the elements of G which annihilate |φ〉 (4) but rather by its elements for
which |φ〉 is an eigenvector with real eigenvalue

Gφ = {t ∈ G : t |φ〉 = T |φ〉, T ∈ R} . (9)

3. Coherent states as group orbits

We follow [9] and define a subset C of Hilbert space H to be a set of coherent states if it is
continuous (and we represent its elements by |c〉, c denoting a finite number of continuous
parameters) and if there exists a positive measure dc on it admitting the partition of the unit
operator ∫

C
d|c〉〈c| = 1. (10)
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Continuity guarantees that it is always possible to redefine the measure dc in such a way that
the |c〉 states are normalized.

For a one-particle system in mechanics the Glauber states [7, 8] can be written as

|q, p〉 = U(q, p)|0〉 (11)

where U(p, q) is the Weyl operator

U(q, p) = ei(pQ−qP )/h̄. (12)

It can be shown that these are minimum-uncertainty states (�Q�P = h̄/2) and that they
are eigenstates of the annihilation operator. Their eigenvalues provide an useful analytic
representation in the complex plane which allows moreover for a differential representation
of operators acting on the functions 〈c|ψ〉. Further information on these properties can be
found in the literature [17, 27]. Here we restrict attention to the group theoretical properties
associated with coherent states.

The Weyl operators act as translation operators for position and momentum in the sense
that

U+(q, p)QU(q, p) = Q + q (13)

U+(q, p)PU(q, p) = P + p. (14)

It follows that

〈q, p|Q|q, p〉 = q and 〈q, p|P |q, p〉 = p. (15)

One can derive the properties

U(0, 0) = 1 (16)

U−1(q, p) = U+(q, p) = U(−q,−p) (17)

U(q2, p2)U(q1, p1) = ei(q1p2−p1q2)/2h̄U(q2 + q1, p2 + p1) (18)

which show that the Weyl operators form a group when acting on projective Hilbert space PH
(see appendix B). On the whole of Hilbert space the Weyl operators together with an Abelian
factor eiθ form a group, the Heisenberg–Weyl group; that is, the Heisenberg–Weyl group is an
extension of the set of the Weyl operators by a circle.

Sets of generalized coherent states in particle mechanics other than the Glauber states
which fit the definition given at the beginning of this section can be constructed by applying
the Weyl operators to an arbitrary vector |φ〉 in Hilbert space H [17]

Cφ = {|p, q;φ〉 = U(q, p)|φ〉, (q, p) ∈ R2}. (19)

Like the set of Glauber states, these sets admit a differential representation of operators. But
they lack the analytic representation in the complex plane and they are not states of minimum
uncertainty since the vector |φ〉 that one starts from is arbitrary and it can have any values of
variances �Q2 and �P 2 a priori. They are not eigenstates of any particularly simple operator
either.

This way of generating sets of coherent states as orbits of groups in Hilbert space has
been generalized to representations of arbitrary Lie groups G [14]. Let U(g), g ∈ G, be an
irreducible unitary representation of G acting on the space H. Pick any vector |φ〉 ∈ H and
consider the G-orbit Cφ (1) passing through |φ〉. One can label the vectors in Cφ with the group
elements

Cφ = {|g;φ〉 = U(g)|φ〉, x ∈ G} . (20)

Continuity of the representation U(g) ensures continuity of the set {|g;φ〉}. In particular one
has for the inner product

〈g;φ|g′;φ〉 = 〈φ|U+(g)U(g′)|φ〉 = 〈φ|U(g−1g′)|φ〉 (21)
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which is bounded by unity. Let dg denote the left invariant measure on the group G. Then if

d =
∫

dg|〈φ|U(g)|φ〉|2 (22)

converges one has [14]

1

d

∫
dg|g;φ〉〈g;φ| = 1. (23)

Therefore the sets Cφ satisfy the criteria given at the beginning of this section to qualify
as coherent states. Representations obeying (22) are termed square integrable and they are
always so if the volume of group space

∫
dg is finite, which happens for compact groups.

We emphasize that without further specification these sets of generalized coherent do not lead
necessarily to analytic function representations [28].

From the definition of the orbits we see that the vectors U(g)|φ〉 for all g which belongs
to one left coset of the little group Gφ in G differ from one another at most by a phase factor
and that these vectors determine the same state in complex projective space. Thus we may
label the vectors in the orbit Cφ with the elements x of the coset space Xφ = G/Gφ and we
write

Cφ = {|x;φ〉 = U [g(x)]|φ〉, x ∈ Xφ

}
(24)

where g(x) is any representative x of the coset. In this way we avoid including ‘repeated’
vectors in the representation of the orbit as it may be the case using the set {|g;φ〉}. In many
cases the measure dg on G induces an invariant measure dx on Xφ = G/Gφ , which may not
be unique. Then the inner product (21) and the partition of identity (23) become

〈x;φ|x ′;φ〉 = 〈φ|U [g(x)−1g(x ′)]|φ〉 (25)

1 = 1

d ′

∫
dx|x;φ〉〈x;φ| (26)

where

d ′ =
∫

dx|〈φ|U [g(x)]|φ〉|2. (27)

Both (21)–(23) and (25), (26) are correct and it is somewhat a matter of taste which one is
preferred (provided that dx is well defined). We shall use mostly the second form.

Let us now specialize to the groupSU(2)which admits representations classified according
to integer and semi-integer values j with the Casimir operator J 2 = j (j + 1)h̄2. Let H be a
Hilbert space carrying one such representation. The sets of coherent states (20) are obtained
by acting on any fiducial state |φ〉 ∈ H with the group elements of SU(2). Using the group
parametrization

U(z, θ) = NezJ−/h̄e−z∗J+/h̄e−iθJz/h̄ (28)

where J± are the ladder operators J± = Jx ± iJy , and choosing the fiducial state to be an
eigenstate of Jz, |m〉 with m = −j, . . . , j , one gets the following set of coherent states [11]:

|z;m〉 = U(z)|z〉 = NezJ−/h̄e−z∗J+/h̄|m〉 (29)

where the phase factor resulting from e−iθJz/h̄ has been ignored (this corresponds to using (24)
rather than (20)) and N stands for a normalization factor. Further choosing |j〉 as the fiducial
state one has e−z∗J+/h̄|j〉 = |j〉 and

|z〉 = 1

(1 + |z|2)j ezJ−|j〉 (30)
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after determination of the normalization factor. This analytic representation is not available in
general for the sets (20) generated from arbitrary fiducial vectors. Uncertainty is not constant
within sets of spin coherent states according to [29] but it may be so according to other
definitions (see [30] where the sets (30) turn out to be composed of minimum-uncertainty
states).

4. Invariants for projective representations

In order to construct real functions which are invariant within orbits (24) we make use of the
inner product in Hilbert space. Clearly the inner product itself 〈x;φ|x;φ〉 is such an invariant.
It can be used to label orbits on the whole of Hilbert space but we are restricting attention
to projective space where 〈x;φ|x;φ〉 = 1 is a constant. Consider the generalized Casimir
operators [31]

Cn = c
b2
a1b1

c
b3
a2b2

. . . c
b1
anbn

Xa1Xa2 . . . Xan (31)

where ccab are the structure constants of the Lie algebra G and Xa its generators

[Xa,Xb] = ccabXc. (32)

Indices are raised and lowered in the Lie algebra using the metric gab = cdacc
c
bd . The generators

of the algebra transform under the action of the group according to the adjoint representation
Aa

b(g)

U+(g)XaU(g) = Aa
b(g)X

b. (33)

Since the Casimir operators commute with all generators of the algebra one has

U+(g)CnU(g) = Aa1
c1
(g)c

b2
a1b1

. . . Aan
cn
(g)c

b1
anbn

Xc1 . . . Xcn = Cn. (34)

As a consequence the mean value of any Casimir operator 〈x;φ|Cn|x;φ〉 = Cn(x;φ) is an
invariant within orbits. But it is of no use to parametrize the orbits because it is actually constant
within the whole irreducible representation. Notice, however, that for any polynomial in the
generators of the algebra one has

Xa1 . . . Xap (x;φ) = 〈φ|U+[g(x)]Xa1 . . . XapU [g(x)]|φ〉
= A

a1
b1

[g(x)] . . . Aan
bn

[g(x)]Xb1 . . . Xbp (φ). (35)

Then according to (34) any function of the form

f = c
b2
a1b1

c
b3
a2b2

. . . c
b1
anbn

Xa1Xa2 Xa3 Xa4Xa5Xa6 . . . Xan (36)

where the mean values are evaluated over any combinations of the generators Xa is an invariant
within orbits. It is clear that using the commutator (32) one can express any function of this
form as a linear combination of functions of the same type which are real. To make clear what
do we mean with (36) let us give the example of the quartic Casimir operator from which the
following invariant functions can be constructed:

f1 = c
b2
a1b1

c
b3
a2b2

c
b4
a3b3

c
b1
a4b4

Xa1Xa2Xa3Xa4 (37)

f2 = c
b2
a1b1

c
b3
a2b2

c
b4
a3b3

c
b1
a4b4

Xa1Xa2Xa3 Xa4 (38)

f3 = c
b2
a1b1

c
b3
a2b2

c
b4
a3b3

c
b1
a4b4

Xa1Xa2 Xa3Xa4 (39)

f4 = c
b2
a1b1

c
b3
a2b2

c
b4
a3b3

c
b1
a4b4

Xa1Xa2 Xa3 Xa4 (40)

f5 = c
b2
a1b1

c
b3
a2b2

c
b4
a3b3

c
b1
a4b4

Xa1 Xa2 Xa3 Xa4 . (41)

The first of these functions is the mean value of the quartic Casimir operator which we know to
be a constant throughout all of Hilbert space, but there is no reason a priori why the remaining
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functions should have the same value at different orbits. On the other hand it is obvious that
the functions f of the generic form (36) cannot all be independent in orbit space. At most
N of them can be so, N being the dimension of orbit space. Our conjecture is that there can
indeed be found N such functions which separate the orbits in projective space and the values
of these functions can then be used to parametrize the orbits.

5. The group SU (2)

5.1. General setting and the two-dimensional representation

Here we propose to study the orbit space and the invariants for the complex projective
representations of SU(2). A similar task has been carried out for the linear representations
of SU(2) in [32] and of SO(3) in [33]. Our problem is related to these but different, and it
has been studied in [18]. Our presentation is complementary to [18] both in the methods used
and in the results. For the projective representations of the group SU(2) the element g = −1,
that is the rotation by 2π , always belongs to the little group of any vector. Therefore these
representations can also be seen as representations of SO(3). We shall for simplicity omit the
factor {1,−1} in the little groups or, which is the same, look upon the spaces as representations
of SO(3). In this section we take h̄ = 1 for simplicity. We shall also consider in the remaining
of this section that j �= 0; the analysis of the identity representation is trivial and in many
respects singular.

Let Ji (i = 1, 2, 3) be the generators of the Lie algebra of SO(3) with commutation
relations

[Ji, Jj ] = iεijkJk. (42)

The quadratic Casimir operator is

J 2 = JiJi . (43)

The higher-order Casimir operators in (31) are powers of J 2 and consequently we can think
of the invariants of the type (36) as constructed from powers of J 2. It is easy to see that up to
the third power in J 2 all the invariants of the type (36) can be written in terms of the following
eight:

f1 = Ji Jj f2 = Ji Jj JiJj f3 = JiJj JjJi

f4 = Ji Jj JiJk JkJj f5 = JiJj JjJk JkJi f6 = Ji Jj Jk JiJjJk (44)

f7 = Ji JjJk JjJiJk f8 = JiJjJk JkJjJi .

All other orderings of operators can be written in terms of these using the commutator (42).
These functions are real and they will be enough for the applications of the remaining sections.

The Lie algebra of the little group is given by the elements satisfying (9)

�r · �J |ψ〉 = λ|ψ〉. (45)

In other words, if |φ〉 is not an eigenvector of angular momentum in some direction, then the
Lie algebra of Gφ is trivial Gφ = {0} and the dimension of the orbit Cφ is maximal, that is
dim Cφ = 3 because the group SO(3) is three dimensional. On the other hand, if |φ〉 is an
eigenvector of angular momentum in some direction, it cannot be so in any other direction and
the Lie algebra of its little group is generated by the operator of angular momentum r̂φ · �J in that
particular direction r̂φ for which |φ〉 is an eigenvector. Therefore the connected component of
the little group Gφ is the subgroup of rotations around the axis in the direction r̂φ . This is a one-
dimensional subgroup and consequently the orbits are two dimensional. We conclude that for
SO(3) there are only two- and three-dimensional orbits. The first consist of all vectors which
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Figure 1. The two-dimensional orbits include one and only one of the vectors |m〉 with m � 0.
There are 2j orbits isomorphic to S2 (left) for m �= 0, and if j is an integer one orbit isomorphic
to RP 2 (right) for m = 0.

are eigenvectors of angular momentum r̂ · �J in some direction r̂ . Note that these considerations
apply only to the connected part of the little group; there may be non-trivial discrete factors
multiplying the connected part of the little group. In fact as we shall see the little group is in
general not connected and orbits with the same dimensionality may differ in their little groups
and therefore not be isomorphic.

Consider a three-dimensional orbit. If its little group is trivial then each element of SO(3)
defines one point in the orbit, and Cφ is isomorphic to SO(3) which is in turn isomorphic to
three-dimensional real projective space RP 3. If the little group is not trivial, Cφ is isomorphic
to the coset space SO(3)/Gφ which is to say to a quotient space of RP 3 by a discrete group.

The two-dimensional orbits can be worked out in detail in the general case. We know that
the eigenvalues of angular momentum in the z-direction Jz are finite and non-degenerate:

Jz|m〉 = m|m〉 with m = −j,−j + 1, . . . , j − 1, j (46)

and that

〈m| �J |m〉 = m�ez. (47)

Applying an element of SO(3) to |m〉 clearly brings it to the eigenvector of the rotated direction
with eigenvalue m. Since these eigenvectors are not degenerate this means that all states
belonging to a two-dimensional orbit can be generated after a rotation from one of the vectors
|m〉, or which is the same that all orbits contain at least one of the vectors |m〉. It is clear
also from the non-degeneracy of the eigenvectors that after a rotation by π around any axis
orthogonal to the z-axis the vector |m〉 is mapped to |−m〉. As a consequence for m = 0 these
rotations also belong to the little group of |0〉. On the other hand they do not for m �= 0 but
one realizes that |m〉 and | − m〉 belong to the same orbit. Moreover eigenvectors in different
(non-parallel) directions cannot be identical. We conclude that there is a finite number of
two-dimensional orbits which can be generated from the vectors |m〉 with m � 0. For m > 0
the little group is the subgroup of rotations around the quantization axis Gm = Rz and the
orbit space consists of all possible directions, which is topologically the two-sphere S2. For
m = 0 the little group is Rz plus the rotations by π in directions orthogonal to the quantization
axis R(x,y)(π), G0 = Rz +R(x,y)(π) = Rz ×Rx(π) and the orbit space consists of all possible
directions (up to sign), which is topologically the two-dimensional projective space RP 2. The
first invariant in (45) can be used to distinguish the different two-dimensional orbits since
f1(|m〉) = m2. In figure 1 we depict the two types of two-dimensional orbits and in figures 2
and 3 we represent their respective little groups (known in the mathematical literature as C∞
and D∞).

The projective space associated to the representation j is CP 2j :

j → dim H = 2j + 1 → projective space : CP 2j (48)
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Figure 2. The little group for the S2 orbits of SU(2).

Figure 3. The little group for the RP 2 orbits of SU(2).

and its real dimension is 4j (see appendix B). Its dimension is therefore greater than 2 for
j > 1/2 and since the two-dimensional orbits are in a finite number, most of CP 2j must
consist of points belonging to three-dimensional orbits. Thus the dimension of orbit space is
4j − 3. For j = 1/2 one has dim CP 1 = 2 and there can be no three-dimensional orbits. On
the other hand we know that there is only one two-dimensional orbit for m = 1/2. Therefore
the whole of CP 1 consists of a single two-dimensional orbit isomorphic to S2. This is in
agreement with the known isomorphism between CP 1 and S2.

We summarize this analysis of orbit space in the following three statements:

(I) The orbit space of SU(2) is (4j − 3)-dimensional for its irreducible representations with
j > 1/2 and consists of three-dimensional orbits apart from a finite number of elements
which are two-dimensional orbits. The orbit space of the representation j = 1/2 consists
of one single point.

(II) The three-dimensional orbits are topologically isomorphic to quotient spaces of RP 3.

(III) The two-dimensional orbits are in number of int(j + 1) (integer part of j + 1) and they can
be distinguished by the value of the invariant Ji Ji = j 2, (j −1)2, . . . with minimum value
1/4 for semi-integer j representations and 0 for integer j representations. Topologically
these orbits are isomorphic to two-spheres S2 except for the Ji Ji = 0 orbit of integer j
representations which is isomorphic to the two-dimensional real projective space RP 2.

The possible little groups of the elements of the three-dimensional orbits can be found
in [18].



4840 N Barros e Sá

5.2. The j = 1 representation

The projective space of the representation j = 1 is four-dimensional CP 2. Using the results
of the previous section we can state that the orbit space is one-dimensional and consists of
three-dimensional orbits plus two two-dimensional orbits, one isomorphic to S2 (m = 1) and
the other to RP 2 (m = 0). In terms of a G-invariant function f : CP 2 → R labelling
the orbits, these two two-dimensional orbits must lie at the vertices of the image of f in R.
Therefore one can state that orbit space is a line segment. Its interior must be of one orbit type
only (the principal stratum, see appendix A) for which the orbits are some quotient space of
RP 3. As a first guess for the G-invariant function to label orbits we may take the function
f1 = Ji Ji in (45).

Now we proceed to the explicit computation of orbits using canonical group coordinates

U(�r) = ei�r·�σ (49)

with

σx = 1√
2

[ 0 1 0
1 0 1
0 1 0

]
σy = i√

2

[ 0 −1 0
1 0 −1
0 1 0

]
σz =

[ 1 0 0
0 0 0
0 0 −1

]
(50)

and the representation of CP 2 given by vectors of the form[ sin θ1 sin θ2eiβ1

cos θ1

sin θ1 cos θ2eiβ2

]
(51)

for which

f1 = sin2 θ1
[

sin2 θ1(cos2 θ2 − sin2 θ2)
2 + 8 cos2 θ1 cos θ2 sin θ2 cos(β1 + β2)

]
. (52)

One has 0 � f1 � 1.
The eigenvalue equation (45) has two families of solutions

|α, β; 1〉 =
[ cos2 αe−iβ

sin(2α)/
√

2
sin2 αeiβ

]
(53)

|α, β; 0〉 =
[ − sin(2α)e−iβ/

√
2

cos(2α)
sin(2α)eiβ/

√
2

]
(54)

with ranges α ∈ (0, π/2) and β ∈ (0, 2π). They represent the eigenvalues corresponding to
the direction

r̂ = (sin 2α cosβ, sin 2α sin β, cos 2α). (55)

The parameter β degenerates completely both at α = 0 and at α = π/2. In (54) states related
by α → π/2 − α, β → β + π correspond to the same point in CP 2. The first solution (53)
is the expected S2 orbit and the second one (54) is the RP 2 orbit. The vectors lying at α = 0
and π/2 are easily recognizable as the eigenvectors |1〉 and | − 1〉, respectively, in (53) and to
correspond both to the eigenvector |0〉 in (54).

Now we check whether f1 separates the orbits. We notice that any state belongs to the
orbit of some state for which

〈ψ | �J |ψ〉 = Jz�ez with Jz � 0 (56)

since it is always possible to rotate a vector and bring it to point in the positive z-direction.
Therefore the solution to (56) contains at least one representative of each orbit. The solution
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Figure 4. The little group for the three-dimensional orbits S3/Z4 of the three-dimensional
representation of SU(2).

to this equation consists of (54) which we know to be composed of one single orbit plus the
set

|θ, β〉 =
[ cos θeiβ

0
sin θe−iβ

]
(57)

with θ ∈ [0, π/4], β ∈ (0, 2π). But

|θ, β〉 = Rz(β)|θ〉 with |θ〉 =
[ cos θ

0
sin θ

]
. (58)

Moreover the vector |θ〉 with θ = π/4 belongs to the orbit (54). Consequently among the
vectors |θ〉 we still have at least one representative of each orbit. Now we compute

f1(|θ〉) = cos2 θ − sin2 θ = cos(2θ). (59)

Clearly the map f1 : θ ∈ [0, π/4] �→ [0, 1] is one-to-one. Thus it is demonstrated that f1

separates the orbits. The two two-dimensional orbits (53) and (54) lie at the extrema of the
line segment f1 ∈ [0, 1] as predicted

f1(|α, β; 0〉) = 0 and f1(|α, β; 1〉) = 1. (60)

It remains to compute the little group of the orbits lying in the interior of f1 ∈ [0, 1].
We can do this by direct calculation using the representatives |θ〉 of (58) and the explicit form
of (49) for j = 1 [35]

U(�r) = 1 +
i sin r

r

[
z c∗ 0
c 0 c∗

0 c −z

]
+

cos r − 1

r2

[
z2 + |c|2 zc∗ c∗2

zc 2|c|2 −zc∗

c2 −zc z2 + |c|2

]
(61)

where r2 = x2 + y2 + z2 and c = (x + iy)/
√

2. The result is Gθ = {1, Rz(π)} for θ ∈]0, π/4[,
that is the discrete subgroup whose only non-trivial element is the rotation by π around the
z-axis. By symmetry it is clear that the little group for any other vector |ψ〉 belonging to a
three-dimensional orbit is

Gψ = {1, R〈ψ | �J |ψ〉(π)}. (62)

This is depicted in figure 4. We confirm the expectation that the interior of the line segment
f1 ∈ [0, 1] consists of one single stratum of three-dimensional orbits. Each orbit is a lens
space with the topology of the quotient of the three-sphere by the cyclic group of order 4 [34]

C = RP 3/Z2 = S3/Z4. (63)

We arrived at a picture of CP 2 as the product of a line segment by S3/Z4 manifolds which
degenerate to S2 at one extremum of the segment and to RP 2 at the other one (figure 5).

The remaining G-invariant functions in (45) are polynomials in f1 as expected:

f2 = f1 f3 = 2 f4 = f1 f5 = 2 f6 = f1
2

f7 = f1 f8 = 2 + f1.
(64)
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Figure 5. Orbit space for the three-dimensional representation of SU(2).

Figure 6. The orbit space for the representation j = 1 of SU(2) as the projective slice PO of the
orbit space O of the linear representation of the realification of U(2).

5.3. The j = 3/2 representation and perspectives for future work

In order to study the matrix P̂ij of (A.3) we consider the whole Hilbert space of the
representation of the realification ofU(2) and the twoG-invariant functionsf1 andf0 = 〈ψ |ψ〉
which separate the orbits. We have then

P̂ =
[ �∇f0 · �∇f0 �∇f0 · �∇f1�∇f1 · �∇f0 �∇f1 · �∇f1

]
=

[
4f0 8f1

8f1 16f2

]
=

[
4f0 8f1

8f1 16f0f1

]
(65)

where the last equality is easily obtained from (64) generalizing this equations to H by-
dimensional arguments. The values off0 andf1 for which the matrix P̂ is positive semi-definite
satisfy

f0 � 0 0 � f1 � f0
2. (66)

This is depicted in figure 6. There are four strata: the interior of this region is the principal
stratum; the lines {f0 > 0, f1 = f0

2} and {f0 > 0, f1 = 0} are two distinct strata composed
respectively of S1 × S2 and S1 × RP 2 orbits; and the point {f0 = 0, f1 = 0} is the zero-
dimensional stratum corresponding to the origin of Hilbert space. The slice f0 = 〈ψ |ψ〉 = 1
gives a faithful image of orbit space in the projective representation (see appendix A).

To use these techniques is one possible approach to study the higher-dimensional
representations of SU(2). We also performed some numerical calculations on the j = 3/2
representation. We leave these issues for possible future work. Here we exhibit in figures 7
and 8, as an example, the numerical plots for the projections of orbit space onto the planes
(f1, f2) and (f1, f8) (f3 = f1 for the j = 3/2 representation). This representation contains
only two two-dimensional orbits isomorphic to S2 according to the results of section 5.1 lying
at the points with values of (f1, f2, f8)(

1
4 ,

1
16 ,

1
64

)
and

(
9
4 ,

81
16 ,

729
64

)
. (67)

In the figures one can observe the expected semi-algebraic variety nature of the image of orbit
space. In particular one would expect the two-dimensional orbits to lie at vertices of the figures
and indeed the kinks at the points (67) are visible in the graphics.
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Figure 7. Numerical plot of the projection onto the plane (f1, f2) of the image of orbit space for
the j = 3/2 representation of SU(2).
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Figure 8. Numerical plot of the projection onto the plane (f1, f8) of the image of orbit space for
the j = 3/2 representation of SU(2).

Numerics can also be used to study the shape of orbits in the picture of CPN described
in appendix B. For the octant picture of CP 2, figure B.2, with Z0 standing for the coordinate
relative to the eigenvector |0〉 and Z1 and Z2 for the coordinates relative to the eigenvectors |1〉
and | − 1〉, one realizes that the vertical projections of the orbits form rectangles with one side
parallel to the bisectrix of the projected quadrant. The bisectrix itself is a degenerate rectangle
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Figure 9. Orbits of the j = 1 representation of SU(2) in the
octant picture of CP 2 (vertical projection).

corresponding to the RP 2 orbit f1 = 0. The other degenerate rectangle is the line joining the
two opposed vertices of the quadrant and it corresponds to the S2 orbit f1 = 1. The function
f1 varies smoothly from one line to the other along the rectangles. The situation is depicted
in figure 9.

5.4. Relation with coherent states

Since the orbit space for the j = 1/2 representation of SU(2) consists of one single point,
this orbit which is the whole of CP 1 has got to coincide with the set of coherent states (30)
for j = 1/2. Indeed one can explicitly work out (30) to get

|z〉 = 1√
1 + |z|2

[
1
z

]
. (68)

The limit z → ∞ defines one single point in projective space, meaning that the complex
plane plus this point indeed forms a two-sphere. Setting z = tan αeiβ one gets a standard
parametrization of CP 1

|α, β〉 =
[

cosα
sin αeiβ

]
(69)

and it is easy to check that each such vector is an eigenvector of r̂ · �J in the direction (55).
The two orbits (53) and (54) of the representation j = 1 are the only two-dimensional

sets of coherent states of this representation and they must therefore coincide with the sets of
coherent states (29) of section 3 for j = 1, whose explicit forms are

|z; 1〉 = 1

1 + |z|2
[ 1√

2z
z2

]
(70)

|z; 0〉 = 1

1 + 4|z|2
[ √

2z∗

1√
2z

]
(71)

|z; −1〉 = 1

1 + |z|2
[

z∗2√
2z∗

1

]
. (72)

The set (72) coincides with (70) apart from a phase z∗/z after the redefinition z → 1/z∗,
which in turn coincides with (53) for z = tan αeiβ . The set (71) coincides with (54) for
|z| = sin α/

√
2 cos(2α) and arg z = β.
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6. Coherent states invariants in particle mechanics

The general result that Hilbert space is uniquely decomposed into orbits of the group generating
the coherent states is still valid in particle mechanics. The orbits of the Heisenberg–Weyl group
are the sets Cφ given in (19). But the non-compactness of the Heisenberg–Weyl group and
the infinite-dimensionality of Hilbert space make the method of finding invariants on orbits
outlined in section 4 inapplicable. We shall therefore proceed in a different direction.

From (13) and (14) we compute

〈q, p;φ|Q|q, p;φ〉 = 〈φ|U+(q, p)QU(q, p)|φ〉 = 〈φ|Q|φ〉 + q (73)

〈q, p;φ|P |q, p;φ〉 = 〈φ|U+(q, p)PU(q, p)|φ〉 = 〈φ|P |φ〉 + p. (74)

This means that within each set Cφ all possible values of Q and of P are present. Moreover
it means that for any two distinct vectors |φ′〉, |φ′′〉 ∈ Cφ one has Q(φ′) �= Q(φ′′) or
P(φ′) �= P(φ′′). Thus one can use Q and P as labels for the different vectors in Cφ . This
corresponds to take as fiducial vector |φ〉 in Cφ the unique vector for which Q(φ) = P(φ) = 0.
Then

〈p, q;φ|Q|p, q;φ〉 = q and 〈p, q;φ|P |p, q;φ〉 = p (75)

as with the Glauber states (15). There the vacuum |0〉 is the unique vector for which
Q = P = 0. Equations (75) also make clear that the little group is trivial (the identity)
everywhere in projective space.

We notice that

U+(q, p)(Q − Q)U(q, p) = Q + q − Q = Q (76)

U+(q, p)(P − P)U(q, p) = P + p − P = P. (77)

Therefore the functions

Mmn = 〈q, p;φ| {(Q − Q)m, (P − P)n
} |q, p;φ〉

= 〈φ|U+(q, p)
{
(Q − Q)m, (P − P)n

}
U(q, p)|φ〉

= 〈φ|{[U+(q, p)(Q − Q)U(q, p)
]m

,
[
U+(q, p)(P − P)U(q, p)

]n}|φ〉
= 〈φ| {Qm,P n

} |φ〉 (78)

with m and n non-negative integers that are invariants within Cφ . Here {, } stands for
the anti-commutator. We use it in order to make the functions Mmn real since any other
ordering of the operators Q and P in (78) can be written in terms of Mmn using the
canonical commutator [Q,P ] = ih̄. These functions resemble moments of a two-dimensional
probability distribution, though their interpretation and properties are different.

The values of Mmn do not range independently over the entire real line. Besides the fact
that for m and n being even one has Mmn � 0, the Mmn are still subject to Heisenberg-like
inequalities. These look reminiscent of the semi-algebraic variety nature of orbit space in the
case of finite-dimensional Hilbert spaces.

The relevant functions in (78) are actually the ones for which the integers m and n satisfy
m + n > 1 since M00 = 1 is simply the normalization condition and M01 = M10 = 0 by
construction. The ‘second-order moments’ are the familiar variances and covariance

M20 = �Q2 M02 = �P 2 M11 = σQP (79)

and the Robertson inequality [36] (a stronger statement then the Heisenberg inequality) reads

M20M02 � 1
4

[
(M11)2 − h̄2

]
. (80)
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For the Glauber states the values of the ‘moments’ involved in this inequality are easy to
compute

M20 = M02 = h̄/2 M11 = 0 (81)

confirming that they are minimum-uncertainty states. It is often not stressed that these states
not only have a minimum value for the uncertainty as they also have constant and identical
values for the products involved in the uncertainty relation, the standard deviations of Q and
P , the same happening for all ‘moments’ of higher order. For any Mmn one can write the
operator to be averaged {Qm,P n} in terms of the creation and annihilation operators a and a+.
It is the sum of a finite number of products in a and a+

{Qm,P n} =
m+n∑
i=0

∑
j=perm.

αijMj [ai(a+)m+n−i] (82)

where the index j runs over the permutations Mj of operator ordering in a and a+. We have
then for the Glauber states

Mmn =
m+n∑
i=0

∑
j=perm.

αij 〈0|Mj [ai(a+)m+n−i]|0〉 (83)

which is a finite sum of finite terms and which is consequently convergent for any integer
values of m and n.

This same argument can be used to demonstrate that all Mmn converge for sets of coherent
states generated from any eigenstate of the number operator |φ〉 = |n〉. And the same is true
for any finite combination of eigenvectors of the number operator

|φ〉 =
N∑

n=0

αn|n〉. (84)

Incidentally these states seem to correspond to the ‘undistorted normalizable wavepackets with
classical motion’ of the harmonic oscillator [37].

The functions (78) do not converge on all orbits. For example, normalizability of ψ(x)

does not imply the convergence of
∫

dx x|ψ(x)|2. But the subspace of Hilbert space where
all the Mmn converge is still composed of the union of entire orbits of the Heisenberg–Weyl
group, and one may wonder whether the functions Mmn separate the orbits. We leave this issue
for future work. For the moment we notice that the Mmn cannot separate a function ψ(x) with
an infinite degenerate zero from another which is identical to it on one side of the zero but
which flips sign on the other (I thank Gerard ’t Hooft for this remark).
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Appendix A. Orbits in real representations

This appendix is taken from [26, 38] (sometimes literally) where the authors consider real
finite-dimensional and orthogonal linear representations of compact groups.

There is a finite number of orbit types. Strata are smooth disjoint submanifolds of H.
However they are not usually patched together smoothly so that the orbit space H/G is not
generally a manifold, but rather is a connected semi-algebraic subvariety of H, that is a subset
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of H defined by polynomial equalities and inequalities. The origin |ψ〉 = 0 is an unique orbit
with little group G, and it belongs to the maximal orbit type.

For compact groups it can be shown that most of the orbits lie on a unique stratum of
minimum-orbit type called the principal stratum.

A.1. Principal orbit theorem

The set of principal vectors is open and dense in H; it is also connected if G is connected. The
set of principal orbits is open, dense and connected (even if G is disconnected) in H/G. All
principal orbits (vectors) lie in a unique stratum whose orbit type is minimal in the set of orbit
types.

From this theorem it can be shown that the boundaries of the principal stratum either in
orbit space H/G or in H are disjoint unions of the remaining strata which turn out to be lower-
dimensional manifolds. The dimension of the little group is the same all over the principal
stratum, dim Gp, and the dimension of orbit space is given by

dim(H/G) = dim H − dim G + dim Gp (A.1)

where Gp is the little group of the principal vectors.
If G is compact it can be shown that G-invariant functions separate the orbits, that is for

two distinct orbits there is at least one G-invariant function taking different values on them.
The set PG

H of all the real polynomials in |ψ〉 (that is in its n coordinates, n being the dimension
of the vector space H) is a ring under addition and multiplication. An integrity basis Pi(|ψ〉)
is a discrete subset of PG

H which generates the ring PG
H in the sense that any element P ∈ PG

H
can be written as

P(|ψ〉) = P [Pi(|ψ〉)]. (A.2)

The ring of polynomial invariants PG
H is finitely generated according to the following theorem.

A.2. Hilbert’s theorem

Let G be a compact Lie group acting orthogonally on H. Then PG
H admits a finite-integrity

basis.
An integrity basis can always be chosen to be minimal, in the sense that no proper

subset of it is still an integrity basis. When the polynomials in the minimal-integrity basis
are algebraically independent the basis is said to be free and the representation U(g) is said to
be co-free.

It can be shown that minimal-integrity basis separate the orbits. This ensures that the set
of its elements can be used to parametrize the points in orbit space. N being the number of
elements of the integrity basis one can think of the orbits as points in RN whose coordinates
are the elements of the basis. The image of orbit space is typically not the whole RN . For
co-free representations N = dim H/G and the image of orbit space is a subset of RN defined
through inequalities between the coordinates as happens with a polyhedron.

Let {Pi} with i = 1, . . . , N be a minimal-integrity basis and define the symmetric matrix

P̂ij = �∇Pi · �∇Pj (A.3)

where the inner product is performed with the same metric used for the inner product 〈ψ |ψ ′〉.
Since this inner product is G-invariant, the elements of P̂ij are G-invariant functions and
according to Hilbert’s theorem polynomials in the {Pi}. The following important result holds.
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Figure A.1. The orbit space for a representation on a vector space and the orbit space for the
projective representation associated with the vector space.

A.3. Theorem

The image of orbit space is the subset O of RN where P̂ij is positive semi-definite (all its
eigenvalues are non-negative). The subset of O where P̂ij has rank k is the union of all the
k-dimensional strata, each of them being a connected component of the subset. In particular
the subset of O where the rank of P̂ij is maximal, that is equal to dim H/G, is the image of the
principal stratum and is connected.

We finish with some remarks concerning projective representations, that is the case when
one considers the representation space not to be the whole space H but the projective space
PH of rays in H (see appendix B; here we consider H to be real). Since U(g) is linear, Gφ

depends only on the direction of |φ〉
Gα|φ〉 = G|φ〉 for α �= 0. (A.4)

This means that any two vectors lying on the same ray have the same orbit type. Therefore the
orbits in H are infinite copies along each ray of the orbits in projective space PH plus the origin
|ψ〉 = 0. For groups with no fixed points (apart from the origin |ψ〉 = 0) the G-invariant
〈ψ |ψ〉 ∈ R+ can always be taken to be one of the elements of the minimal-integrity basis.
Then one can write

O = PO × R+ + {|0〉} (A.5)

where PO stands for the image of the orbit space of the projective representation. It turns out
that most of the results of this section go through unchanged, particularly in what concerns
the geometry of orbit space. The situation is depicted in figure A.1. Of course the use of
minimal-integrity basis needs to be adapted. A detailed study of orbit spaces for projective
representations can be found in [38]. For our purposes it suffices to mention that whenever
necessary, such as in the application of the last theorem of this section one can always start
with the vector space representation and fix 〈ψ |ψ〉 = 1 a posteriori.

Appendix B. Complex projective space

Two vectors in Hilbert space H differing by a multiplicative non-zero complex constant α

represent the same physical state

|z′〉 ∼ |z〉 if |z′〉 = α|z〉. (B.1)

Therefore the space of physical states is the space of rays in Hilbert space or projective space
PH, that is the space of equivalence classes defined by (B.1) excluding the vector |ψ〉 = 0. The
projective spaces constructed from finite-dimensional Hilbert spaces are called CPN and are
well studied spaces [39]. The superscript N stands for their complex dimension which is one
unit lower than the complex dimension of the Hilbert space from which they are constructed.
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Figure B.1. Complex projective space CP 1. Figure B.2. Complex projective space CP 2. The shaded
region is the vertical projection of the octant used in
figure 7.

If |n〉 is a basis for (N + 1)-dimensional Hilbert space any vector |ψ〉 can be written as

|ψ〉 =
N∑

n=0

Zn|n〉. (B.2)

The complex numbers Zn are homogeneous coordinates in H and they can also be used as
coordinates in CPN provided one makes the identifications

Z′
n ∼ Zn if ∃α : ∀n Z′

n = αZn. (B.3)

To form a picture of how CPN looks like topologically one may consider the (N + 1)-
dimensional space spanned by the absolute values of the homogeneous coordinates Zi and set∑N

i=0 |Zi |2 = 1. The resulting hyper-surface is the arch that bounds a quadrant for N = 1, the
curved surface of an octant for N = 3, etc. These hyper-surfaces have a natural decomposition
in smooth sets of all dimensions from N down to 0. For example, in the case of the octant they
are: the face, the three edges and the three vertices. At each point on the interior of the hyper-
surfaces (that we may call N -octants) sits an N -torus because |Zn| �= 0,∀n and the number
of relative phases is the maximum N . And on each one of the smooth sets mentioned before
of dimension d sits a d-dimensional torus because N − d of the |Zn| vanish. In particular the
vertices in this picture are points in CPN and not projections of tori. The lowest-dimensional
CP 0 is obviously nothing but a point. The situation is depicted in figures B.1 and B.2 forN = 1
and 2 respectively. We note that these pictures of CPN are more than merely topological. For
example, geodesics on CPN with respect to the Fubini–Study metric [39], when projected to
the N -octant, coincide with the ordinary geodesics on the N -sphere, that is, they are the archs
of the greater circles (equators) contained in the N -octant.
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